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Abstract. Connected automated vehicles (CAVs) have the potential to improve the

efficiency of vehicular traffic. In this paper, we discuss how CAVs can positively

impact the dynamic behavior of mixed traffic systems on highways through the lens

of nonlinear dynamics theory. First, we show that human-driven traffic exhibits a

bistability phenomenon, in which the same drivers can both drive smoothly or cause

a congestion, depending on perturbations like a braking of an individual driver. As

such, bistability can lead to unexpected phantom traffic jams which is undesired. By

analyzing the corresponding nonlinear dynamical model, we explain the mechanism

of bistability and identify which human driver parameters may cause it. Second, we

study mixed traffic that includes both human drivers and CAVs, and analyze how

CAVs affect the nonlinear dynamic behavior. We show that a large enough penetration

of CAVs in the traffic flow can eliminate bistability, and we identify the controller

parameters of CAVs that are able to do so. Ultimately, this helps to achieve stable and

smooth mobility on highways.

Key words: Connected automated vehicle; mixed traffic; nonlinear dynamics;

time delay

1. Introduction
Connected automated vehicles (CAVs) have the promise of revolutionizing transportation, with the ultimate

goal of achieving safe, stable and smooth traffic flows. Yet, before the era of fully connected and automated

mobility, we can expect at least a few decades of mixed traffic in which CAVs coexist with human-driven

vehicles (HVs) on the road. Therefore, it is crucial to prepare CAVs to cooperate with human drivers and to

analyze how the behavior of CAVs may impact the dynamics of mixed traffic systems.

There exist several longitudinal control strategies for CAVs that may positively impact the safety and

efficiency of mixed traffic. First, adaptive cruise control (ACC) systems have been proposed to control auto-
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Figure 1 (a) Illustration of homogeneous traffic consisting of human-driven vehicles (HVs) only. (b) Mixed

traffic that includes HVs and connected automated vehicles (CAVs) executing connected cruise control (CCC).

(c,d) The corresponding ring configurations that are used for analyzing the nonlinear dynamics of mixed

traffic systems.

mated vehicles by responding to the preceding vehicle in a safe (Nilsson et al. 2016, Ames et al. 2017) and

string stable manner (Bekiaris-Liberis et al. 2018, Gunter et al. 2021) with desired driving behavior (Wang

et al. 2021, Qin 2022). Later on, ACC systems have been extended to incorporate information from vehicle-

to-vehicle (V2V) connectivity that can further improve performance. The approach of cooperative adaptive

cruise control (CACC) has appeared to regulate platoons of communicating and cooperating CAVs (Turri

et al. 2017, Bertoni et al. 2017, McAuliffe et al. 2018, Wang et al. 2018, van Nunen et al. 2019). Although

this approach may significantly improve the driving behavior of CAVs, it requires full connectivity and

automation within an entire platoon. To control individual CAVs in mixed traffic, the strategy of connected

cruise control (CCC) (Orosz 2016, Zhang and Orosz 2016) has been proposed, wherein the CAV utilizes

information from other connected (but not necessarily automated) vehicles. Importantly, there have been

several works that highlighted that the driving behavior of CAVs equipped with the above mentioned con-

trollers can be highly beneficial for the smoothness of mixed traffic (Cui et al. 2017, Čičić and Johansson

2018, Zheng et al. 2020, Giammarino et al. 2021, Hayat et al. 2022, Lichtlé et al. 2022, Wang et al. 2022, Yu

and Krstic 2022), which was also demonstrated by experiments (Ge et al. 2018, Stern et al. 2018, Avedisov

et al. 2022).

While many of these analyses and control designs have been established by relying on linear dynam-

ical models, traffic systems exhibit several nonlinear dynamics phenomena that can fundamentally shape

the overall behavior of vehicles. Some important examples of nonlinearities are: the limited acceleration

capabilities of vehicles that imply saturation-type nonlinearities; the relationship between the velocity of

vehicles and the distance they intend to keep that is typically nonlinear; and the resistance forces acting

on the vehicles (from rolling resistance, road grade and air resistance) that are nonlinear functions of the

position and speed. Importantly, such nonlinearities in dynamical systems may cause periodic oscillations
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(i.e., so-called limit cycles) that do not exist in linear systems. In the context of vehicular traffic, these peri-

odic motions manifest themselves as repeated, large-amplitude accelerations and decelerations of vehicles,

ultimately leading to a traffic congestion also called as phantom jam.

Phantom jams have been studied extensively in the literature. The formation of phantom jams in human-

driven traffic was explained by Orosz and Stépán (2006) and Orosz et al. (2009, 2010) who used bifurcation

analysis tools to study the nonlinear traffic dynamics. It was highlighted that a so-called bistability phe-

nomenon in the underlying dynamics is responsible for the phantom jams, and that the reaction time of

human drivers plays a significant role. Kiss et al. (2019) extended these results to analyze the nonlinear

dynamic behavior of CAVs executing CCC. The bistability phenomenon was further analyzed, and the

effects of connectivity and the limited acceleration capabilities of vehicles were described. These results

were established for a three-vehicle scenario: a single CAV and two HVs. Larger-scale mixed traffic sce-

narios including multiple CAVs have not yet been analyzed from nonlinear dynamics point of view. So

far, phantom jams in such scenarios have been studied by simulations: for example, Avedisov et al. (2022)

demonstrated the existence of stop-and-go jams in mixed traffic with different penetrations of CAVs.

A comprehensive analysis about the nonlinear dynamics of mixed traffic including multiple CAVs (i.e.,

different penetrations thereof) is yet to be conducted. Such an analysis is crucial for understanding how

CAVs can leverage connectivity and automation to destroy phantom jams. Now we seek to build on the

above mentioned previous works to fill this gap. In this paper, we analyze the nonlinear dynamics of mixed

traffic with different penetrations of CAVs. This analysis serves to identify controllers for CAVs that provide

smooth driving behavior and ultimately mitigate the occurrence of phantom jams. Specifically, we use

numerical bifurcation analysis methods to study the nonlinear dynamics of mixed traffic on a ring road

setting with multiple HVs and multiple CAVs executing CCC. We study the occurrence of large-amplitude

periodic motions corresponding to phantom jams, and we show that CAVs with appropriately designed

controllers are able to successfully mitigate and eliminate these unfavorable phenomena.

The paper is organized as follows. In Section 2 we show simulation results to demonstrate the nonlin-

ear behavior of vehicular traffic and motivate the upcoming analysis. In Section 3 we discuss a model of

mixed traffic systems, and in Section 4 we describe the underlying linear and nonlinear dynamic behavior.

Section 5 closes with conclusions.

2. Motivation
As motivation, we first present numerical simulation results obtained for the homogeneous human-driven

traffic shown in Figure 1(a). In particular, the following scenario is simulated. Identical HVs follow each

other on a single-lane straight road. Each vehicle is described by the model (1), (5) and (6) discussed later

in Section 3, which is simulated via Matlab’s built-in delay differential equation solver dde23. According

to this model, each vehicle accelerates based on human driver commands subject to a response time τi
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Figure 2 Simulation of human-driven traffic. (a) String stable scenario where velocity perturbations decay

and smooth traffic is attained. (b) String unstable case where perturbations amplify along the vehicle chain

and a stop-and-go traffic jam is formed. (c,d) Bistable scenario where smooth and oscillatory motions both

occur, and a phantom jam may be triggered by a large enough perturbation like an excessive braking of an

individual vehicle. Importantly, bistability is caused by nonlinearities and cannot be captured by linear

models. The model (1), (5) and (6) from Section 3 was simulated with initial conditions hi(t) = hgo, vi(t) = vmax,

t∈ [−τi,0], for parameters τi = 0.6 s and (a) αh = 0.1 s−1, βh = 0.8 s−1, (b) αh = 0.2 s−1, βh = 0.4 s−1, (c,d)

αh = 0.4 s−1, βh = 0.5 s−1 (related to points S, U and B in Figure 4(a)).

and acceleration limits amin and amax. The behavior of human drivers is captured by the so-called optimal

velocity model (motivated by Bando et al. (1998); see also Kiss et al. (2019), Avedisov et al. (2022)). This

model includes the response of drivers to the headway hi ahead of their vehicle, to their speed vi, and to the

speed difference from the preceding vehicle. The model contains the following human driver parameters:

coefficients αh and βh that weigh the responses to headway and speed difference, desired standstill headway

hst, free flow headway hgo, and speed limit vmax. The details and parameters of this model will be further

explained in Section 3, while notations are summarized in Table 1, and parameter values are listed in Table 2

and at the figures.

Figure 2 shows simulation results for a chain of 49 HVs, where the speed of each vehicle is plotted as a

function of time (with every twelfth vehicle highlighted in purple). The simulations imitate a braking event,

in which the leading vehicle slows down, then accelerates to recover its original speed and continues to

cruise at that speed, while the subsequent vehicles respond to this perturbation. We investigate how such

perturbations affect the smoothness of the overall traffic flow.
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Figure 2(a) shows a so-called string stable scenario, in which each driver reduces its speed less than the

vehicle ahead of it, and hence the perturbation ultimately dies out and a smooth traffic flow is recovered over

time. While this phenomenon is desired, it depends on the driving behavior of HVs. Other human drivers

(e.g. those with larger reaction time) may overreact to the perturbation and reduce their speeds more than the

vehicle ahead of them, resulting in the string unstable behavior in Figure 2(b). This leads to large-amplitude

oscillations in the speeds of vehicles, and eventually, a traffic congestion with stop-and-go motion.

The onset of a traffic congestion, however, may be hard to predict. While the two cases in Figure 2(a,b)

– smooth traffic and congestion – correspond to two different sets of human driver parameters, there exist

scenarios in which even the same drivers can produce these two qualitatively different behaviors. This is

illustrated in Figure 2(c,d) where the same human drivers are simulated but the perturbation is different: the

lead vehicle reduces its speed by 15 and 16 m/s, respectively. The simulation highlights that a large enough

perturbation triggers a traffic congestion, while the traffic flow smoothes out for a small perturbation. This

phenomenon is called bistability, and the corresponding hard-to-predict congestion is a phantom jam.

Clearly, bistability is undesired as it can lead to unexpected phantom jams due to events like a braking

of an individual driver. Importantly, bistability phenomena are unique to nonlinear dynamical systems.

Thus, nonlinearities – like the saturation of accelerations of vehicles or the nonlinear relationship between

the desired speed and distance of HVs – have crucial role in shaping the overall traffic behavior. In what

follows, we seek to mitigate unstable and bistable behaviors by injecting CAVs into the traffic flow. We

analyze the nonlinear dynamics of mixed traffic and explain the mechanism of bistability, with the end goal

of controlling CAVs to achieve globally stable traffic without phantom jams.

3. Modeling of Mixed Traffic
First, we formulate a dynamical model for single-lane mixed traffic systems illustrated in Figure 1. Panel

(a) shows the reference case of homogeneous traffic consisting of human-driven vehicles (HVs) only. Panel

(b) indicates the case of interest: mixed traffic that includes HVs and connected automated vehicles (CAVs).

Such car-following systems are often considered on ring roads for the purpose of analyzing linear and non-

linear dynamics, since the stability properties of large rings can approximate the string stability properties

of infinite straight roads (Orosz et al. 2010, Cui et al. 2017, Giammarino et al. 2019, von Allwörden and

Gasser 2021, Molnár et al. 2023). The ring configurations corresponding to homogeneous and mixed traffic

are shown in panels (c) and (d). Note that the same 3-vehicle group is repeated along the ring in panel (d).

To construct a dynamical model, we use the notations summarized in Table 1. Let us number the vehicles

with index i that increases in the direction of motion, and let us denote the set of indices of HVs and CAVs

by IHV and ICAV. Furthermore, let vi denote the velocity of vehicle i and hi be the headway ahead of vehicle

i. We capture the longitudinal motion of these vehicles by delayed double integrator models:
dhi

dt
(t) = vi+1(t)− vi(t),

dvi
dt

(t) = sat(ui(t− τi)).

(1)
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Table 1 Notations used throughout the paper.

Variable Symbol Variable Symbol Variable Symbol
vehicle index i time delay τ HV range policy Vh

time t saturation function sat HV driver parameter
αhheadway h braking limit amin (response to headway)

speed v acceleration limit amax HV driver parameter
βhdesired acceleration u car-following law f (response to speed diff.)

number of vehicles N speed limit vmax CAV range policy V
net ring length L standstill headway hst CAV control gain

αindices of HVs IHV free flow headway hgo (response to headway)
indices of CAVs ICAV equilibrium speed v∗ CAV control gain

βjnumber of vehicles that
m

HV equil. headway h∗
h (response to speed diff.)

CAVs may respond to CAV equil. headway h∗ CAV speed policy W

Here ui is the desired acceleration of each vehicle that is realized by the human drivers or low-level CAV

controllers. This acceleration is saturated if it lies outside the acceleration limits −amin,i and amax,i of the

vehicles, as expressed by:

sat(ui) =min{max{−amin,i, ui}, amax,i}, (2)

that is illustrated in Figure 3(a). Furthermore, the time delay τi describes the response time of vehicle i,

which consists of the actuation (powertrain) delay of the vehicles and the reaction time of human drivers or

the communication and feedback delays of CAVs. Note that, instead of delays, first-order lags are also often

used in the literature to capture these response times or to approximate the effects of delays. In practice,

typically combinations of lags and delays occur. Meanwhile, time delays are known to give rise to bistability

in various nonlinear systems (Dombovari et al. 2008, Saha and Wahi 2011, Molnár et al. 2016, Veraszto

and Stepan 2017, Beregi et al. 2019, Vörös et al. 2023). Therefore, here we choose to use a single delay for

each vehicle in our model to simplify the analysis while still being able to capture bistability.

In the case of a ring configuration with N vehicles, the dynamics (1) are coupled with the periodic

boundary condition:

v0(t) = vN(t), (3)

as well as with a constraint that the headways sum up to the net ring length L:

N−1∑
i=0

hi(t) =L. (4)

The desired acceleration of human drivers is captured by models of the form:

ui = fi

(
hi, vi,

dhi

dt

)
, i∈ IHV. (5)

That is, human drivers tend to respond to the headway hi, velocity vi and velocity difference dhi/dt,

according to a selected human driver model fi that is often nonlinear. Hence, the saturation function sat and

the human driver model fi give rise to nonlinear dynamics that may showcase bistability.
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Figure 3 Nonlinearities in the mixed traffic model: (a) saturation of desired acceleration, (b) range policy of

human drivers, (c) range policy of CAVs, (d) speed policy of CAVs.

EXAMPLE 1. In the numerical results of this paper (like Figure 2), we use the optimal velocity model

(OVM) originated from Bando et al. (1998), which was shown to capture human driver behavior in the

experiments of Avedisov et al. (2022). The OVM reads:

fi

(
hi, vi,

dhi

dt

)
= αh

(
Vh(hi)− vi

)
+βh

dhi

dt
, (6)

∀i∈ IHV. This model includes response to the velocity difference dhi/dt with a coefficient βh and response

to the headway hi with a coefficient αh. The latter incorporates the range policy Vh that captures the speed

that HVs intend to keep as a nonlinear function of the headway, such as:

Vh(h) =


0 if h≤ hst,

vmax
(3hgo−hst−2h)(h−hst)

2

(hgo−hst)3
if hst <h<hgo,

vmax if hgo ≤ h,

(7)

that is plotted in Figure 3(b). This describes that HVs intend to stop if their headway is below the standstill

headway hst, while they increase their speed according to a cubic function for larger headways until reaching

the speed limit vmax at the free flow headway hgo. For simplicity, in numerical examples we consider

identical human drivers with the same βh, αh and Vh parameters. While the upcoming numerical results are

obtained for the OVM and identical HVs, our framework to analyze the occurrence of phantom jams applies

to other human driver models and nonidentical driver behaviors as well. Bistability can also be observed for

the intelligent driver model and for nonidentical HVs with the OVM, which is demonstrated by simulations

in Appendix A.

As opposed to HVs, CAVs are able to respond to multiple vehicles if those vehicles are connected to the

CAV. We assume that CAV i is able to detect the preceding vehicle i+ 1 (by range sensors or V2V con-

nectivity) and that it may connect to up to m vehicles in its communication range. This leads to connected

cruise control (CCC) laws for CAVs of the form:

ui = fi(hi, vi, vi+1, . . . , vi+m), i∈ ICAV, (8)
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Table 2 Parameters used for the numerical results.

Variable Symbol Value Unit
braking limit amin,i 7 m/s2

acceleration limit amax,i 3 m/s2

speed limit vmax 30 m/s
standstill headway hst 5 m
free flow headway hgo 55 m

where, if a distant vehicle i+ j (with 1< j ≤m) is not connected to the CAV, its speed vi+j can be omitted

from fi. The expression of fi is determined by the CAV’s control design. For simplicity, we consider that

CAVs respond to the velocities vi+j of distant vehicles, although more general control laws could contain

response to positions too.

EXAMPLE 2. In our numerical results, we adopt the CCC strategy from Zhang and Orosz (2016):

fi(hi, vi, vi+1, . . . , vi+m) = α
(
V (hi)− vi

)
+

m∑
j=1

βj

(
W (vi+j)− vi

)
, (9)

that is analogous to the OVM (6) with additional response to the velocities of multiple preceding vehicles.

This controller was implemented on a passenger vehicle by Ge et al. (2018), Avedisov et al. (2022), Beregi

et al. (2023) and on a heavy-duty truck by Alan et al. (2024), with successful hardware experiments on both

closed test tracks and public roads. The corresponding control gains α and βj can be designed, whereas the

range policy is chosen to be piecewise linear:

V (h) =


0 if h≤ hst,

vmax
h−hst

hgo−hst
if hst <h<hgo,

vmax if hgo ≤ h,

(10)

as shown in Figure 3(c). Furthermore, the control law includes the speed policy W that prevents the CAV

from speeding if the preceding vehicles exceed the speed limit:

W (v) =min{v, vmax}; (11)

see Figure 3(d). For simplicity, in numerical examples we choose the controller parameters β, α and V to

be the same for all CAVs. Furthermore, we use the same hst, hgo and vmax values for all HVs and CAVs,

listed in Table 2. These parameters, however, could depend on the index i.

4. Dynamic Behavior of Mixed Traffic
Now we analyze the dynamic behavior of mixed traffic systems by utilizing the model (1)-(11). The analysis

is centered around studying the equilibrium and periodic solutions (limit cycles) of this model. For the sake

of a simple analysis, we focus on the ring configurations in Figure 1(c,d). However, further below we will

demonstrate via numerical simulations that the identified nonlinear phenomena can also be observed for

vehicle chains.



Molnar and Orosz: Destroying Phantom Jams with Connectivity and Automation: Nonlinear Dynamics and Control of Mixed Traffic
Article submitted to Transportation Science 9

The equilibrium of the mixed traffic system describes the scenario where vehicles travel with constant

speed, denoted by v∗, while maintaining constant headway, h∗
h for HVs and h∗ for CAVs. That is, the

equilibrium solution is vi(t)≡ v∗, hi(t)≡ h∗
i with h∗

i = h∗
h for i∈ IHV and h∗

i = h∗ for i∈ ICAV, where

v∗ = Vh(h
∗
h) = V (h∗) holds; cf. Figure 3(b,c). The equilibrium represents the ideal, smooth flow of traffic.

The stability of the equilibrium depends on the driving behavior of HVs and CAVs. This is demonstrated

by Figure 2(a) and Figure 2(b) that are simulated for different human driver parameters. If the equilibrium is

stable, small perturbations like a braking of an individual driver are attenuated as in Figure 2(a), and smooth

traffic is attained over time as desired. As opposed, unstable equilibrium results in amplifying perturbations

like in Figure 2(b). The stability of the equilibrium is typically studied via linearization, see below.

Periodic solutions, on the other hand, may represent congested traffic. If a traffic congestion forms on

the ring configurations of Figure 1(c,d), it typically manifests itself in large-amplitude repeated (periodic)

fluctuations in the speeds and headways of vehicles, such as stop-and-go motion. In the nonlinear dynamics

literature such periodic motions are called limit cycles, which are defined as isolated closed trajectories in

the state space. If a limit cycle is stable, then the system tends to this motion over time and large-amplitude

velocity fluctuations are showcased in traffic. If the limit cycle is unstable, then the traffic behavior diverges

from the corresponding periodic motion (and instead, typically behaviors related to a stable equilibrium or

another stable limit cycle are observed over time). The existence and stability of limit cycles are studied

through the analysis of the nonlinear dynamics, as discussed below.

Moreover, a stable equilibrium and a stable limit cycle may coexist in certain scenarios (i.e., for certain

HV and CAV parameters). This is called bistability—defined as the coexistence of two stable solutions in

a nonlinear dynamical system with given parameters. The main signature of bistable systems is that they

may showcase two qualitatively different behaviors in experiments (related to the two stable solutions)

depending on initial conditions and perturbations. In case of bistable traffic, this means that the system

converges to the stable equilibrium and showcases smooth traffic flow for small speed perturbations, while

it approaches the stable limit cycle and exhibits phantom jam for large perturbations; cf. Figure 2(c,d). That

is, both the equilibrium and the limit cycle are locally stable, with a finite domain of attraction determined

by the nonlinear dynamics. These properties are quantified for model (1)-(11) below.

4.1. Linear Dynamics

Before addressing nonlinear dynamics, we briefly revisit linear analysis results that neglect nonlinearities.

These results were established by linearization of the mixed traffic model (1)-(11) around the equilibrium

and by eigenvalue analysis (i.e., studying whether the roots of the corresponding characteristic equation

are located in the left half of the complex plane). This linear stability analysis procedure considers small

amplitude and arbitrary frequency for the underlying speed perturbations. Through this analysis, Ge and

Orosz (2014) established stability conditions at the linear level for the equilibrium of mixed traffic, and

expressed these conditions in terms of the parameters of the human drivers and CAV controllers.
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Here we briefly outline the steps of analyzing the linearized dynamics, while the remaining details

are described in Appendix B. The linearized dynamics are formalized by considering small headway and

speed perturbations around the equilibrium, where these perturbations are defined by h̃i(t) = hi(t)−h∗
i

and ṽi(t) = vi(t)− v∗. Substituting these perturbations into (1) and (5) and linearizing the right-hand side

results in the following linear dynamics for HVs (i∈ IHV):

dh̃i

dt
(t) = ṽi+1(t)− ṽi(t),

dṽi
dt

(t) =Ai,1h̃i(t− τi)+Ai,2ṽi(t− τi)+Ai,3

dh̃i

dt
(t− τi),

(12)

where Ai,l (l ∈ {1,2,3}) is the partial derivative of fi in (5) with respect to its lth argument evaluated at

the equilibrium. For the OVM model (6) these coefficients can be expressed using the gains αh, βh and the

gradient κh =
dVh
dh

(h∗
h) of the range policy; see Appendix B.

Similarly, linearizing (1) and (8) leads to the following dynamics for CAVs (i∈ ICAV):

dh̃i

dt
(t) = ṽi+1(t)− ṽi(t),

dṽi
dt

(t) =Ai,1h̃i(t− τi)+Ai,2ṽi(t− τi)+

m∑
j=1

Ai,j+2ṽi+j(t− τi),
(13)

where Ai,l (l ∈ {1,2, . . . ,m+2}) is the partial derivative of fi in (8) with respect to its lth argument eval-

uated at the equilibrium. For the controller (9) these coefficients can be expressed using the gains α, βj ,

j ∈ {1, . . . ,m} and the gradient κ= dV
dh

(h∗) of the range policy; see Appendix B.

The linearized dynamics can be transformed to Laplace domain. For HVs (i∈ IHV), we get:

Vi(s) = Ti,i+1(s)Vi+1(s), (14)

whereas for CAVs (i∈ ICAV) we obtain:

Vi(s) =

m∑
j=1

Ti,i+j(s)Vi+j(s), (15)

where Vi(s) is the Laplace transform of the velocity perturbation ṽi(t). Here Ti,i+j(s) are so-called link

transfer functions (Zhang and Orosz 2016), which characterize the (linearized) response of vehicle i to

vehicle i+ j. The link transfer functions can be expressed using the coefficients Ai,l; see (20) and (25) in

Appendix B.

To describe the overall response of multiple vehicles, the link transfer functions can be combined into a

so-called head-to-tail transfer function (Zhang and Orosz 2016). For example, for CAVs that respond to m

vehicles ahead of them (like in Figure 1(b) where m= 3), the head-to-tail transfer function Gi,i+m(s) can

be used to characterize the overall response of the m vehicles by establishing the relationship between the

motions of vehicle i and vehicle i+m:

Vi(s) =Gi,i+m(s)Vi+m(s), (16)
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Figure 4 Linear stability charts of (a) human-driven traffic on a ring, (b) mixed traffic where every third

vehicle is CAV, (c) mixed traffic where every second vehicle is CAV. Unfavorable driver behavior may be

associated with parameters that yield unstable human-driven traffic. Yet, when a large enough number of

CAVs is mixed into the traffic flow, linear stability can still be achieved, provided that the controller

parameters of CAVs are chosen from the stable region (grey). The parameters that yield these results are

N = 24 and (a) τi = 0.6 s, (b,c) τi = 1s (i∈ IHV), αh = 0.1 s−1, βh = 0.6 s−1, τi = 0.6 s (i∈ ICAV) and α= 0.4 s−1. The

net ring length L is chosen such that the range policy gradient at the equilibrium headway of HVs is

κh =
dVh
dh

(h∗
h) = 0.6s−1; cf. Figure 3(b).

i∈ ICAV. The expression of Gi,i+m(s) is given in Appendix B. Similarly, the notion of head-to-tail trans-

fer function can also be used to capture the overall response of the N vehicles traveling along the ring

configuration:

V0(s) =G0,N(s)VN(s). (17)

Ultimately, the transfer function G0,N(s) can be expressed in terms of the parameters Ai,l and the delays

τi describing the HVs and CAVs, or equivalently, in terms of αh, βh, κh, α, βj , κ, and τi; see the details in

Appendix B.

Using the head-to-tail transfer function that characterizes the linearized response, linear stability analysis

can be conducted to determine whether speed perturbations amplify or decay along the ring. The analysis

is based on the characteristic equation of the ring configuration:

G0,N(s) = 1, (18)

which follows from (17) and from V0(s) = VN(s) according to the periodic boundary condition (3). The

dynamics of the ring configuration are stable and speed perturbations decay if the roots sℓ of the charac-

teristic equation (18) are located in the left half of the complex plane, i.e., Re(sℓ)< 0 holds for all ℓ∈Z.

Meanwhile, the mixed traffic system is at the boundary of stability when Re(sℓ) = 0 for some ℓ∈Z. This

condition is analyzed in Appendix B, and explicit formulas are derived for the stability boundaries in terms

of the parameters of HVs and CAVs.
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The end result of this analysis is the so-called stability charts depicted in Figure 4. These charts dis-

tinguish parameters associated with locally stable and unstable equilibrium. Figure 4(a) corresponds to

human-driven traffic. If the human driver parameters lie inside the linearly stable region (i.e., the grey

shaded domain bounded by the blue curves), the resulting stable behavior qualitatively matches the one

observed in Figure 2(a), which was simulated for point S of Figure 4(a). Parameters outside the linearly

stable region cause unstable behavior like in Figure 2(b), which was simulated for point U of Figure 4(a).

Note, however, that linear stability charts are not able to explain the bistability phenomenon in Figure 2(c,d)

associated with point B in Figure 4(a).

Even when human drivers are associated with unstable parameters, linear stability can be achieved if a

large enough number of well-designed CAVs is mixed into the traffic flow. Figure 4(b) shows the stability

chart of mixed traffic where every third vehicle is CAV (with m= 3) while others are HVs associated with

unstable parameters, whereas Figure 4(c) represents the case where every second vehicle is CAV (with

m= 2). Notice that the stable domain grows significantly as the penetration of CAVs increases, which

shows the positive impact of CAVs on traffic.

It is important to highlight that the stability charts can be used as a tool for designing the controllers of

CAVs in a theoretically justified manner. Since the charts in Figure 4(b,c) showcase linearly stable regions

in the space of the CAVs’ controller parameters, a stable overall mixed traffic can be achieved by designing

controllers such that their parameters lie in the grey shaded stable domain. This method has been success-

fully implemented and stability charts have been validated by experiments for the case of a single HV-CAV

pair by Beregi et al. (2023). In what follows, we seek to derive stability charts for mixed traffic systems by

taking into account the phenomenon of bistability. The charts will ultimately allow us to design efficient

controllers for CAVs that are able to destroy phantom jams.

4.2. Nonlinear Dynamics

The above described linear stability charts do not contain information about the bistability phenomenon.

Now we investigate the nonlinear dynamics and analyze bistability. The analysis is conducted numerically,

using a Matlab tool called DDE-BIFTOOL (Engelborghs et al. 2002, Sieber et al. 2014). This tool is able

to analyze nonlinear dynamical systems given by delay differential equations, including the calculation of

equilibria and their stability, as well as periodic solutions (limit cycles) and their stability. To this end, we

implemented the model (1)-(11).

4.2.1. Human-driven Traffic First we consider the reference case of homogeneous human-driven

traffic in Figure 1(c). Figure 5 shows the corresponding results, where the stability chart in panel (a) is

repeated from Figure 4(a). In the linearly stable region (union of red and grey domains), the linearized

dynamics suggests that the equilibrium traffic flow is stable, hence traffic congestion does not occur. How-

ever, analyzing the nonlinear dynamics reveals that large-amplitude oscillatory motions (limit cycles) exist
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Figure 5 Nonlinear dynamics of human-driven traffic in ring configuration. (a) Boundaries (blue) of the

linearly stable region (shaded red and grey) associated with linearly stable equilibrium traffic, and boundary

(black) of the bistable region (shaded red). In the bistable domain, a stable limit cycle coexists with the stable

equilibrium, thus perturbations like a braking of an individual driver may trigger oscillatory motions and

phantom jams. (b) Amplitude and stability of the arising limit cycles. (c) Time period of limit cycles. (d,e)

Large-amplitude oscillatory motion corresponding to the stable limit cycle in point B, which shows the

occurrence of a phantom jam. The parameters match those of Figure 4(a).

for certain parameters. For example, point B(0.5,0.4) in Figure 5(a) yields such parameters, and Fig-

ure 5(d,e) show one period of the corresponding oscillating motion. The motion of one of the HVs is

highlighted in purple. Clearly, the velocity and headway undergo large fluctuations that repeat over time as

the HV drives around the ring. Remarkably, this stop-and-go phantom jam is revealed through the analysis

of the nonlinear dynamics—the linearized dynamics could not predict it.

The above described phantom jam was found systematically through the following analysis. First, we

calculated the equilibrium and analyzed its stability numerically for various (βh, αh) parameters. This way

we reproduced the stability chart in Figure 4(a). We found that along the blue curves in Figure 5(a) the sta-
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Figure 6 Behavior of bistable human-driven traffic. Equilibrium, unstable limit cycle and stable limit cycle

coexist for the nonlinear dynamics in ring configuration (top row). Corresponding simulations of an open

vehicle chain show that the traffic flow becomes smooth when responding to a small speed perturbation

(middle row) while it converges to stop-and-go motion for a large perturbation (bottom row). The smooth flow

is associated with the equilibrium, the stop-and-go motion is related to the stable limit cycle, whereas the

corresponding domains of attraction (that determine which one of these two behaviors is observed under

perturbation) are affected by the unstable limit cycle. The parameters are the same as in Figure 2 and point B

of Figure 5(a), while the speed perturbation of the lead vehicle differs from that in Figure 2. The initial

conditions are hi(t) = h∗
h, vi(t) = v∗, t∈ [−τi,0].

bility properties of the equilibrium change as (βh, αh) are varied. Specifically, a so-called Hopf bifurcation

happens (that is associated with a complex pair of characteristic roots crossing the imaginary axis and hence

a potential change in stability; see Guckenheimer and Holmes (1983)).

Second, limit cycles associated with the Hopf bifurcation were computed. For this calculation, we fixed

parameter αh and varied βh; see the horizontal dashed line in Figure 5(a) at αh = 0.4 s−1. Limit cycles

are born from each Hopf bifurcation point at the intersections of the dashed line and blue curves. We

computed these limit cycles for each βh value numerically. This led to branches of limit cycles whose
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stability and amplitude (i.e., the peak-to-peak amplitude of the corresponding velocity fluctuations) are

indicated in Figure 5(b) as a function of βh. In Figure 5(b), we can observe the occurrence of linearly

unstable equilibria (u.e.), linearly stable equilibria (s.e.), unstable limit cycles (u.l.c.) and stable limit cycles

(s.l.c.). The branch of limit cycles responsible for the phantom jam is highlighted by colored thick line,

while other branches are plotted by dashed black lines. Along the colored branch, first the limit cycles are

unstable and their amplitude increases as βh is increased. Then, the branch folds, the limit cycles become

stable, and the amplitude saturates around vmax as βh is decreased. These large-amplitude stable limit cycles

are associated with oscillatory, stop-and-go motion – a phantom jam – where the speed repeatedly changes

between 0 and the speed limit vmax. The time period of the limit cycles is plotted in Figure 5(c), whereas

one period of the stop-and-go motion is illustrated in Figure 5(d,e) for point B of Figure 5(b).

Figure 5(b) reveals that for certain βh parameters—between the Hopf bifurcation point and the point

where the branch of limit cycles folds—a large-amplitude stable limit cycle coexists with the stable equi-

librium (and also with an unstable limit cycle). The coexistence of the stable equilibrium and the stable

limit cycle is called bistability—a phenomenon appearing in nonlinear systems only. It means that in prac-

tice two qualitatively different behaviors can be observed for the same human drivers: the traffic flow can

either be stable and smooth (associated with convergence to the equilibrium) or a phantom jam can appear

(associated with convergence to the large-amplitude stable limit cycle); as illustrated by Figure 2(c,d).

Whether smooth flow or congestion is observed for a bistable traffic system depends on whether per-

turbations push the system to the domain of attraction (DoA) of the equilibrium or to that of the stable

limit cycle. These DoAs are determined by the unstable limit cycle, as highlighted in Figure 6. The top

row shows the stable equilibrium, unstable limit cycle and stable limit cycle of the human-driven traffic for

point B of Figure 5(a). Note that the stable limit cycle matches the purple curves in Figure 5(d,e). The other

panels of Figure 6 show simulations of the corresponding open chain of vehicles with the same parameters;

cf. Figure 2(c,d). The middle row shows a below-threshold (6 m/s) speed perturbation for the lead vehicle.

As this perturbation is “inside” the unstable limit cycle in the phase portrait of panel (f), convergence to the

equilibrium is observed and the traffic flow becomes smooth. Meanwhile, an above-threshold (8 m/s) per-

turbation in the bottom row goes “outside” the unstable limit cycle in panel (h), and results in convergence

to the large-amplitude stable limit cycle associated with a stop-and-go traffic jam. Note that limit cycles

were calculated for the ring configuration with N = 24 vehicles, whereas simulations were conducted for an

open chain of vehicles, hence the agreement between these results is approximate. Furthermore, technically

the state space of system (1)-(11) is infinite-dimensional due to the time delay, and the phase portraits in

the right panels of Figure 6 are low-dimensional representations only. In fact, the DoAs exist in the infinite-

dimensional state space, where it is nontrivial to interpret “inside” and “outside” the unstable limit cycle.

Thus, the amplitude, frequency and shape of perturbation signals all play a role in whether a phantom jam
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is observed. Nevertheless, the existence of the unstable limit cycle determines the topology of the system

and the two DoAs, and ultimately leads to the existence of phantom jams.

Importantly, we found that bistability occurs in human-driven traffic for a relatively wide range of driver

behaviors. Specifically, by repeating the limit cycle computation of Figure 5(b) for various values of αh, we

identified a large bistable region in the (βh, αh) parameter space, as indicated by red shading in Figure 5(a).

Meanwhile, the occurrence of the bistability phenomenon is undesired in traffic systems, as it can lead to

unexpected phantom jams. Therefore, next we investigate the occurrence of bistability in mixed traffic, and

we seek to mitigate it by CAVs.

4.2.2. Mixed Traffic We repeated the numerical analysis of equilibria and limit cycles for the case of

mixed traffic. Figure 7 shows the corresponding results where every third vehicle is CAV (each responding

to the CAV m= 3 vehicles ahead) while the others are HVs. The dynamic behavior is analyzed as a function

of the CAVs’ controller parameters. The figure shows that while a bistable region still exists (see panel

(a)) where traffic congestion could happen (see panels (d,e) associated with point B(0.25,0.1)), a significant

part of the linearly stable region is not bistable. Thus, by using this chart, one can easily find controller

parameters for CAVs that avoid bistability and ultimately lead to smooth traffic flow—even under nonlinear

behavior.

Figure 8 shows the effect of increasing the penetration of CAVs in the traffic flow. As opposed to Figure 7

where every third vehicle was CAV (corresponding to 33% penetration with m= 3), Figure 8 shows the

scenario in which every second vehicle is CAV (i.e., 50% penetration with m= 2). Clearly, more CAVs

increase the size of the linearly stable region and reduce the relative size of the bistable region, which

both facilitate smooth, congestion-free traffic. Note that Figure 8 reveals an additional phenomenon that is

common for larger numbers of vehicles: the occurrence of period doubling (PD) bifurcation that gives rise

to a limit cycle with doubled time period; see panel (b) that is plotted for β2 = 0.1 s−1. These additional

period-two limit cycles were also considered when analyzing bistability.

Importantly, Figure 7 and Figure 8 provide a theoretically justified way to select the parameters of the

CAVs’ controllers. In particular, the control gains associated with globally stable traffic are located inside the

grey region of Figure 7(a) and Figure 8(a). Thus, these stability charts offer stable gains for implementation,

like the gains in point S. To demonstrate this, we chose the stable point S(0.3,0.3), and we conducted

numerical simulations. The simulations are shown in Figure 9 for 17%, 25%, 33% and 50% penetration of

CAVs (with m= 6, m= 4, m= 3 and m= 2, respectively). While the human drivers behave string unstable

(see the growing perturbations for the grey curves), the CAVs (blue) are able to overcome this and smooth

out the traffic as desired.

The ability of CAVs to smooth out mixed traffic flows, however, is limited by their penetration. Stable

traffic may no longer be achievable if the CAV penetration is too low. The minimum penetration required
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Figure 7 Nonlinear dynamics of mixed traffic in ring configuration where every third vehicle is CAV (with

m= 3). The same properties are shown with the same notations as in Figure 5. Observe that the bistable

region is small, thanks to the CAVs. While a phantom jam with large-amplitude oscillatory motion could still

occur, the controller parameters of CAVs can be tuned using this chart to avoid it. The rest of the parameters

match those of Figure 4(b).

for stable traffic depends on the human driver behavior. In Figure 9 every human driver has a large reaction

time (τi = 1s) and hence behaves in a highly string unstable manner, making this a “worst-case scenario”.

For this particular example, instability is observed below 15% penetration (i.e., for m≥ 7).

It important to remark that the connectivity between the CAVs plays crucial role in achieving globally

stable mixed traffic. Specifically, connectivity allows CAVs to obtain information from connected vehicles

farther ahead, beyond the line of sight. This information provides a look-ahead of the upcoming velocity

perturbations, which enables CAVs to respond to perturbations early, and thereby compensate for the time

delays involved in their dynamics that would otherwise give rise to the linear instability and nonlinear

bistability phenomena.
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Figure 8 Nonlinear dynamics of mixed traffic in ring configuration where every second vehicle is CAV (with

m= 2). Compared to Figure 7, the higher penetration of connectivity and automation increases the size of the

linearly stable region and decreases the relative size of the bistable region. This helps to eliminate traffic

congestion phenomena and gives large freedom to select the controller parameters of CAVs. The rest of the

parameters match those of Figure 4(c).

The importance of connectivity is also highlighted by the stability charts presented above. Globally stable

behavior is achievable only if the CAVs respond to the information from connectivity, that is, if β3 ̸= 0

in Figure 7 and β2 ̸= 0 in Figure 8. Note, however, that information from connectivity is available only if

the CAVs travel in each other’s communication range, which is a few hundred meters with current vehicle-

to-vehicle connectivity technology. If the penetration of CAVs is very low and they are distributed sparsely

in traffic, they may be too far from each other to communicate. As opposed, a higher penetration increases

the chance of CAVs to communicate and helps eliminate instability or bistability phenomena.

The benefit of connectivity is further emphasized in Figure 10, where the scenario of Figure 9 is sim-

ulated without connectivity, considering non-connected automated vehicles (AVs) instead of CAVs. The

AVs execute adaptive cruise control, obtained from the CCC strategy (9) with βj = 0, j > 1, i.e., without
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Figure 9 Simulation of mixed traffic where every mth vehicle is CAV (corresponding to 100/m% penetration

of connectivity and automation). Stable traffic flow is achieved despite the string unstable human driver

behavior thanks to CAVs—even considering nonlinear dynamics. The parameters are (a) m= 6, (b) m= 4, (c)

m= 3, (d) m= 2, and β1 = 0.3 s−1, βm = 0.3 s−1 (related to point S in Figure 7(a) and Figure 8(a)). The rest of the

parameters match those in Figure 7 and Figure 8.

response to the vehicles farther ahead of the AVs. The remaining control gains α and β1 are tuned to the

best values found by the experiments in Beregi et al. (2023). According to Figure 10, AVs without connec-

tivity fail to achieve stable mixed traffic unless the penetration of automation is very high (such as 50%). As

opposed, moderate penetrations (such as 17%) of CAVs leveraging connectivity successfully smoothed out

the traffic in Figure 9. These results show the promise of CAVs and the importance of connectivity to mit-

igate congestion in mixed traffic—ultimately leading to a more stable, smooth and safe future of mobility

on highways.

5. Conclusions
In this paper, we analyzed the nonlinear dynamics of mixed traffic systems on highways, consisting of

human-driven vehicles and connected automated vehicles (CAVs). We showed that homogeneous human-

driven traffic is susceptible to phantom jams and bistability—an undesired phenomenon in which the same

human drivers can both exhibit smooth driving behavior or cause a severe traffic congestion, depending

on perturbations like an unexpected braking of an individual driver. To remedy this, we demonstrated that

bistability and congestion can be mitigated by the positive impact of CAVs on mixed traffic, and we iden-

tified controller parameters for CAVs that are able to do so. Moreover, we highlighted that connectivity
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Figure 10 Simulation of mixed traffic where every mth vehicle is non-connected AV (corresponding to

100/m% penetration of automation and no connectivity). Compared to Figure 9, much larger penetration of

automation is required to achieve stable traffic flow, which highlights the importance of connectivity. The

parameters are the same as in Figure 9, except β1 = 0.5 s−1 and βm = 0.

between CAVs plays crucial role in mitigating the phantom jams caused by time delays and nonlinearities

in the dynamics, while smooth mixed traffic is more challenging to achieve by automated vehicles with-

out connectivity. Finally, we demonstrated that increasing the penetration of CAVs in mixed traffic further

improves the nonlinear dynamic behavior and helps to avoid phantom jams caused by bistability.

Throughout this paper, we limited our discussion to a specific car-following model to describe human

drivers and a specific connected cruise controller to regulate the motion of CAVs. We also restricted our

numerical case studies to identical human drivers and identical CAVs, to reduce the number of underly-

ing parameters. Nevertheless, our framework to explain congestion phenomena in mixed traffic—with the

notions of bistabilty and phantom jams, and the tools of stability charts and bifurcation analysis—is appli-

cable to other car-following models, other control strategies, and nonuniform driving behaviors too. The

detailed analysis of these cases is left for future work. Future research directions also include analytical

calculations to support the numerical analysis of bistability, and the extension of this work to multi-lane

traffic scenarios and urban environments.
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Figure 11 Simulation of human-driven traffic with the intelligent driver model. Similar to Figure 2(c,d),

bistability is observed: smooth traffic and phantom jam are both possible for the same human drivers. The

model (1), (5) and (19) was simulated with a= 2m/s2, b= 8m/s2, vmax = 36m/s and T = 1.2 s, while setting the

delay to τi = 0.9 s. The remaining parameters and the initial conditions are the same as in Figure 2(c,d).

Appendix A Bistability with Various Human Driver Models
Figure 2(c,d) demonstrate bistable behavior and the occurrence of a phantom jam in human-driven traffic

for a case where each HV is identical and described by the optimal velocity model (OVM). In this appendix,

we highlight that bistability also occurs in case of other human driver models as well as in heterogeneous

traffic where the HVs are nonidentical.

First, we demonstrate simulation results with the intelligent driver model (IDM) from Treiber et al.

(2000):

fi

(
hi, vi,

dhi

dt

)
= a

1−
(

vi
vmax

)4

−

H
(
vi,

dhi
dt

)
hi

2
 ,

H
(
vi,

dhi

dt

)
= hst +Tvi −

dhi

dt

vi√
ab

,

(19)

where the parameters hst and vmax have the same meaning as in the OVM, while a, b and T are additional

driver parameters. Figure 11 shows the results of simulating the dynamics (1) and (5) of human-driven traffic

with the IDM (19). Clearly, the same qualitative behavior is observed as in Figure 2(c,d): smooth traffic

flow is recovered for a small speed perturbation, while a phantom jam occurs for a large one, indicating that

the traffic system is bistable.

Next, we highlight that bistability and phantom jams occur for heterogeneous human-driven traffic. Fig-

ure 12 plots simulation results for the dynamics (1) and (5), considering nonidentical HVs described by

the OVM (6) with driver parameters chosen randomly for each HV. The three rows of the figure show-

case scenarios with three different sets of human driver parameters. Bistability arises in each case similar

to Figure 2(c,d), and we observed this phenomenon consistently for several other random parameter sets

too.
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Figure 12 Simulation of heterogeneous human-driven traffic with three different sets of driver parameters.

Bistability and phantom jams are observed in each case, similar to the homogeneous traffic with identical

HVs in Figure 2(c,d). The driver parameters are chosen for each HV randomly, from the intervals

αh ∈ [0.2,0.6] 1/s, βh ∈ [0.25,0.75] 1/s and τi ∈ [0.3,0.9] s based on uniform distribution. The remaining parameters

and the initial conditions are the same as in Figure 2(c,d).

These results highlight that, although the main body of the paper presents examples for identical human

drivers described by the OVM, the phenomena of bistability and phantom jams are generic and occur for

various human driver models and even for nonidentical HVs.
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Appendix B Linear Stability Analysis
In this appendix, we discuss stability analysis for the linearized dynamics of mixed traffic, and we describe

the analytical calculation of the linear stability charts in Figure 4.

B.1 Human-driven Traffic

First, we consider human-driven traffic on a ring, as illustrated by Figure 1(c). We consider N identical

human drivers with delay τi = τ for all i∈ IHV and with behavior governed by (1) and the OVM in (6).

Within the saturation limits of sat and Vh, the corresponding linearized dynamics in (12) have the coeffi-

cients Ai,1 = αhκh, Ai,2 =−αh and Ai,3 = βh, where κh =
dVh
dh

(h∗
h). By the Laplace transformation of (12),

we obtain the link transfer function in (14) in the form:

Ti,i+1(s) =
Ai,3s+Ai,1

s2esτ +(Ai,3 −Ai,2)s+Ai,1

=
βhs+αhκh

s2esτ +(αh +βh)s+αhκh

, (20)

for all i∈ IHV.

Since the ring consists of N identical HVs, the head-to-tail transfer function in (17) reads:

G0,N(s) =
∏

i∈IHV

Ti,i+1(s) = Ti,i+1(s)
N . (21)

Therefore, the characteristic equation (18) of the ring becomes:

Ti,i+1(s) = e−j 2kπN , (22)

where k ∈ {0,1, . . . ,N − 1} is called the wave number. After substituting (20), this leads to:

s2esτ +(αh +βh)s+αhκh − (βhs+αhκh)e
j 2kπN = 0. (23)

For each value of k, this equation can be solved for s and characteristic roots can be calculated, denoted

by sℓ, ℓ∈Z. These roots must lie in the left half of the complex plane to achieve stability. Note that for

k= 0 we have the root s0 = 0, which represents the ring’s translational symmetry. Hence we consider the

remaining roots only and determine whether Re(sℓ)< 0 holds.

More precisely, we calculate the stability boundaries where Re(sℓ) = 0 holds for some ℓ∈Z\{0}. These

boundaries are formulated as curves in the space (βh, αh) of parameters. To obtain these boundaries, we

substitute s= jω into (23), where j2 =−1 and ω≥ 0. For ω= 0, we obtain αh = 0 as stability boundary.

For ω > 0, we decompose (23) into real and imaginary parts, and solve the resulting two equations for βh

and αh. For k= 0, this yields αh = (−1)q (2q+1)π

2τ
, q ∈Z. For k > 0, this leads to stability boundaries that

are parameterized by ω > 0:

αh =
ω2

(
cos(ωτ)− cos

(
ωτ − 2kπ

N

))
−ω sin 2kπ

N
+2κh

(
1− cos 2kπ

N

) ,
βh =

−ω2 cos(ωτ)+κhω
(
sin(ωτ)− sin

(
ωτ − 2kπ

N

))
−ω sin 2kπ

N
+2κh

(
1− cos 2kπ

N

) .

(24)

The stability boundaries are plotted in Figure 4(a) for each value of k, resulting in the blue curves bounding

the linearly stable parameter region.
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B.2 Mixed Traffic

Next, we consider mixed traffic on a ring with N vehicles where every mth vehicle is CAV while the others

are HVs; see Figure 1(d). That is, a group of m vehicles (one CAV and m− 1 HVs) is repeated N/m times

along the ring, where N/m is considered to be an integer. Each HV is assumed to be identical, as described

above. Furthermore, the CAVs are also identical, executing the CCC (9) with delay τi = σ for all i∈ ICAV.

Within the saturation limits of sat, V and W , the linearized dynamics (13) have the coefficients Ai,1 = ακ,

Ai,2 =−α−
∑m

j=1 βj and Ai,j+2 = βj , where κ= dV
dh

(h∗). The link transfer functions describing the CAVs

in (15) read:

Ti,i+1(s) =
Ai,3s+Ai,1

s2esσ −Ai,2s+Ai,1

=
β1s+ακ

s2esσ +
(
α+

∑m

j=1 βj

)
s+ακ

,

Ti,i+j(s) =
Ai,j+2s

s2esσ −Ai,2s+Ai,1

=
βjs

s2esσ +
(
α+

∑m

j=1 βj

)
s+ακ

, j ∈ {2, . . . ,m},
(25)

for all i∈ ICAV. The link transfer functions describing HVs are still given by (20) for all i∈ IHV.

We assume that each CAV responds to the vehicle immediately ahead of them and to the preceding CAV

m vehicles ahead, that is, β1 and βm are nonzero while βj = 0 for j ∈ {2, . . . ,m− 1}. Then, the response of

the m-vehicle group, that comprises the CAV and the m−1 preceding HVs, is described by the head-to-tail

transfer function:

Gi,i+m(s) = Ti,i+1(s)

m−1∏
j=1

Ti+j,i+j+1(s)+Ti,i+m(s), (26)

for all i∈ ICAV.

Since the group of m vehicles is repeated N/m times along the ring, the head-to-tail transfer function of

the overall ring configuration in (17) becomes:

G0,N(s) =
∏

i∈ICAV

Gi,i+m(s) =Gi,i+m(s)
N/m. (27)

Therefore, the characteristic equation (18) takes the form:

Gi,i+m(s) = e−j 2kπm
N , (28)

with k ∈ {0,1, . . . ,N/m− 1}. After substituting (25), this leads to:

s2esσ +(α+β1 +βm)s+ακ−
(
(β1s+ακ)Gi+1,i+m(s)+βms

)
ej

2kπm
N = 0, (29)

where Gi+1,i+m(s) =
∏m−1

j=1 Ti+j,i+j+1(s) denotes the overall response of the m− 1 HVs. The stability of

the ring configuration can be analyzed by investigating the roots of the characteristic equation (29). Again,

notice that for k= 0 we have the root s0 = 0 (since Gi+1,i+m(0) = 1 holds), which represents the ring’s

translational symmetry and is disregarded for the subsequent analysis.
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We calculate the stability boundaries as curves in the space (β1, βm) of control gains. To this end, we

substitute s= jω into (29). For ω= 0, we obtain α= 0 as stability boundary which does not show up as a

curve in the (β1, βm) space. For ω > 0, we decompose (29) into real and imaginary parts, and solve it for

β1 and βm. For k= 0, we get:

β1 =
ω2 cos(ωσ)−ακ(1−ΓR)

ωΓI

, (30)

where ΓR =Re(Gi+1,i+m(jω)), ΓI = Im(Gi+1,i+m(jω)) and ω is the solution of:

−ω2 ((1−ΓR) cos(ωσ)−ΓI sin(ωσ))+ακ
(
(1−ΓR)

2 +Γ2
I

)
−αωΓI = 0. (31)

For k > 0, we obtain the following stability boundaries parameterized by ω > 0:

β1 =
ω2

(
cos(ωσ)− cos

(
ωσ− 2kπm

N

))
+αωS−ακ ((ΓR +1) (1−C)+ΓIS)

ω ((ΓR − 1)S−ΓI (1−C))
,

βm =
−ω2

(
cos(ωσ)−ΓR cos

(
ωσ− 2kπm

N

)
−ΓI sin

(
ωσ− 2kπm

N

))
ω ((ΓR − 1)S−ΓI (1−C))

+
−αω (ΓRS+ΓIC)+ακ (1− 2ΓRC +2ΓIS+Γ2

R +Γ2
I )

ω ((ΓR − 1)S−ΓI (1−C))
,

(32)

where S = sin 2kπm
N

and C = cos 2kπm
N

. The stability boundaries are plotted as the blue curves in Fig-

ure 4(b,c) for each value of k, considering m= 3 and m= 2.
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Beregi S, Avedisov SS, He CR, Takács D, Orosz G (2023) Connectivity-based delay-tolerant control of automated

vehicles: Theory and experiments. IEEE Transactions on Intelligent Vehicles 8(1):275–289, URL http://

dx.doi.org/10.1109/TIV.2021.3131957.

Beregi S, Takacs D, Stepan G (2019) Bifurcation analysis of wheel shimmy with non-smooth effects and time delay

in the tyre–ground contact. Nonlinear Dynamics 98(1):841–858, URL http://dx.doi.org/10.1007/

s11071-019-05123-1.

Bertoni L, Guanetti J, Basso M, Masoero M, Cetinkunt S, Borrelli F (2017) An adaptive cruise control for con-

nected energy-saving electric vehicles. IFAC-PapersOnLine 50(1):2359–2364, URL http://dx.doi.org/

10.1016/j.ifacol.2017.08.425.
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org/10.1007/978-3-031-19346-0.

Zhang L, Orosz G (2016) Motif-based design for connected vehicle systems in presence of heterogeneous connectivity

structures and time delays. IEEE Transactions on Intelligent Transportation Systems 17(6):1638–1651, URL

http://dx.doi.org/10.1109/TITS.2015.2509782.

Zheng Y, Wang J, Li K (2020) Smoothing traffic flow via control of autonomous vehicles. IEEE Internet of Things

Journal 7(5):3882–3896, URL http://dx.doi.org/10.1109/JIOT.2020.2966506.


